The Present and Future Use of High-Energy X-rays for Industrial Materials Research

Yan Gao GE Global Research Center Niskayuna, NY 12309

Workshop on "Science with High-Energy X-rays" August 9, 2004, Advanced Photon Source, ANL

Acknowledgem ent

Beamlines XOR 1-ID-C, 5-BM-D

Ulrich Lienert (APS)
Jon Almer (APS)
Peter Lee (APS)
Dean Haeffner (APS)
Peter Chupas (ANL)
Qing Ma (DND-CAT)

Beamlines X17B1, X15A

Zhong Zhong (NSLS)

Bill Carter (GE)

Jim Ruud (GE)

Tom Angeliu (GE)

Kan Kump (GEMS)

Outlin

e

- > GE and GE Global Research
 - > The Present
 - Residual stress measurement
 - Characterization of TBC
 - High throughput XRD and SAXS
 - ·Hg XRF at 83 keV
 - Pr EXAFS at 42 keV
 - Other applications with HE X-rays
 - > The Future
 - Cutting-edge capability
 - Advanced characterization
 - · A friendly user facility

GE and GE Global Research

Niskayuna, NY

India China

GE Global Research: Hub for innovation

Then...

Discovery of synchrotron radiation at GE Research Center (1947)

And Now...

Cutting-edge research

- Hydrogen storage materials
- Solid Oxide Fuel Cell
- Photovoltaics

Why is GE interested in HE X-rays

- Unique capability (penetrating power. intensity)
- Superior data quality (S/N, angular resolution)
- Productivity (simpler sample prep, fast data collection)

Research on many metals, alloys, and ceramics

Residual stress measurement

Obtain depth profile by layer removal

In-house X-ray source

- · Large beam footprint
- Low intensity for high-angle peaks
- Low accuracy
- · Layer-removal for depth profile

Synchrotron X-rays

- · Small beam size
- High intensity
- High accuracy
- Non-destructive with HE X-rays

Obtain depth profile by moving sample

Residual Stress Determination Is Very Important for Industry

Non-destructive residual stress measurement

- Shot-peening effect was measured as a function of depth
- · Sample stage was used to bring more grains to diffraction

Obtaining triaxial strain tensor

Diffraction data were collected at various χ , ϕ and t (depth up to 1.3 mm)

352 images were taken in 6 hours per sample in automated operation

XOR 1-ID-C (U. Lienert)

Non-destructive residual stress measurement

- Triaxial stress components determined
- •Affected depth up to 400 μm.

High-energy X-ray powder diffraction

Combined with MarCCD and an auto sampler, high throughput measurements can be performed.

Sagittal focusing monochromator

- Providing 10¹¹ ph/s at 67 keV by focusing horizontal beam from 40 mm to 0.5 mm, which is an flux increase by 2 order of magnitude.
- Vertical divergence is between 10-30 micro-radians good angular resolution

Applications to Thermal Barrier Coatings (TBC)

- Polymorphs: tetragonal, cubic and monoclinic
- Separation of tetragonal and cubic peaks
- Determination of lattice parameters and c/a': transformable (t) and nontransformable (t')

• Texture: difficult with conventional XRD.

Applications to Thermal Barrier Coatings (TBC)

TBC analyses may involve large number of measurements

Performance DOE

or

	Temperature							
	X	X	X					
o	X	X	X					
Time	X	X	X					
	X	X	X					
	X	X	X					

- Tetra = 49.9 wt%
- Cubic = 47.9 wt%
- *Mono = 2.2 wt%*
- Tetra c/a' = $1.0154 \rightarrow t'$
- Tetra c/a' \rightarrow 4.4 mol% YO₁₅
- Tetra $c/a' \rightarrow thermal \ history$
- Cubic $a \rightarrow 14.0 \text{ mol}\% \text{ YO}_{1.5}$
- Peak width → micro-strain
- Peak position → macro-strain

Applications to cast ODS alloys

Oxide Dispersion Strengthened A

Conventional analyses

- •XRD phase analysis
- •TEM sample: from a tiny area
- •SAXS sample: thin and small

TEM micrograph

Applications to cast ODS alloys

Cross-section of ingot A few mm thick

Transmission HE-XRD

- Phase identification
- Oxide dispersion in macro scale

HE-SAXS

- Oxide dispersion in micro scale
- Oxide size and size distribution

Applications to cast ODS alloys

HE-SAXS

- Oxide dispersion in micro scale
- Oxide size and size distribution

Igor + SAS macro (J. Ilavsky)

XOR 1-ID-C (J. Almer)

High-energy X-ray fluorescence

" TT A	ind	ing l	Enei	rgy	(ke	e <i>V)</i>	at	K			T 7.4	7.7T.A	7.77T A	0 He
1.008 IIA 3 4 Li Be 6.941 9.012									5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	4.003 10 Ne 20.18
11 12 Na Mg 22.99 24.31 IIIB	IVB	VB VI			VIIIB		В	шв	13 Al 26.98	14 Si _{28.09}	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 20 21 K Ca Sc 39.10 40.08 44.96	71 47.90	V C 50.94		26 Fe 55.85	27 Co 58.93	28 Ni 58.70	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 38 39 Rb Sr Y 85.47 87.62 88.91	40 Zr 91.22	41 42 Nb M 92.91 95.9	о Тс	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 56 57 * Cs Ba La 132.9 137.3 138.9	72 Hf 178.5	73 74 Ta W 180.9 183		76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb ^{207.2}	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
81 88 89 # F Ra Ac (223) (226.0) (227)	104 Rf	105 100 Ha Ur	107 h Uns	108	¹⁰⁹ U ne						† •	90.5		
	* 58	59 60	61	62	63	64	65	66	67	68	69	70	71	
36.0	Ce	Pr N 140.9 144	.2 (145)	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0	
	≠ 90 Th 232.0	91 92 Pa U (231) 238	Np	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

Example: Hg K-edge

- Low Hg concentration (a few mg)
- •Many commonly used elements, including RE elements on-destructive
- Excitation beyond the energy of in-house XRF
- Greater fluorescence yield at K-edge
- •Useful for non-destructive detection

• Hg vapor pressure vs. temperature

Non-destructive detection of Hg vapor in F-lamps

X-ray absorption spectroscopy using HE X-rays

Motivation: Understand the role of Pr doping in Quantum Splitting Ph

- Pr L-edge not possible due to La
- Pr K-edge not possible at

K-edge data from APS 5-BM-D

Quantitative phase analysis using HE X-rays

<u>Objective</u>: Quantify W, WC and W₂C Tungsten absorption is too severe for in-house conventional X-rays

Solution: High-energy XRD at 67 keV!

Non-destructive XRD using HE X-rays

QuPipe

How does it work and why?

Patents

United States Patent 6,132,823 Gu October 17, 2000

Superconducting heat transfer medium

Abstract

pt.

A superconducting heat transfer medium that has three basic layers, the first layer being various combinations of sodium, beryflium, a metal such as manganese or aluminum, calcium, boron and dichromate radical; the second layer formed over the first layer and being various combinations cobalt, manganese, beryflium, strontium, rhodium, copper, beta-titanium calcium, a metal such as manganese or aluminum and the dichromate former.

67 KeV X-ray in transmission mode

The pipe is claimed to have several layers, and work only when it is sealed, therefore HE-XRD is the chosen technique to investigate the interior chemistry and crystal structure.

The Future

Cutting-edge capability

- •A turnkey facility for MicroXRD and microXRF
- Fast time-resolved in-situ diffraction

Advanced characterization

- Non-destructive residual stress
- •High-throughput materials screening (XRD, XRF and SAXS)

A friendly user (including industrial users) facility

- Dedicated instrumentation for frequently used techniques
- Quick access and/or remote access
- Commercialized analytical services

Microdiffraction with high spatial resolution

Cross-section of a SOFC part:

Consisting cathode, anode, electrolytes,

interconnect, seal glass,

While elemental information may be obtained by SEM-EDS, it's very important to obtain <u>crystal structure</u> information from region of interest as marked.

A turnkey microdiffraction station: aim and shoot

A wavelength dispersive XRF detector can be added Monochromatic beam for polycrystalline area Interchangeable, Sample focused white and monochromatic beam of a few μm across **CCD Camera** White beam for single crystal **2D** detector

Crystal structure

Fast time-resolved XRD

Time resolution can be essential for mechanistic understanding!

XOR 1-ID-C using GE 2D detector (P. Chupas and P. Lee)

Fast time-resolved XRD with GE

DetectorGE detector at work at XOR 1-ID-C

Area: 41 cm x 41 cm

Pixel size: 200 μm

Readout: 41 ms for 2k x 2k (Angio)

• Dynamic range: 14 bits

Digital Data

Advanced Characterization

With automated sample stage, 2D detector, high-energy X-rays, superb synchrotron intensity, and dedicated data analysis software, large number of samples can be preloaded and measured unattended or remotely. High-energy X-rays in transmission mode is particularly useful for many inorganic or metallic materials.

Same approach, combined with micro-focused beam, can also be used for <u>automated diffraction mapping</u> with monochromatic beam, or <u>elemental mapping</u> with white beam.

Advanced Characterization

- Residual stress and plastic deformation are very important for industrial applications
- Actual samples involves complex geometry, and small beam and high intensity are essential for obtaining accurate data
- Non-destructive with HE X-rays

 Consider dedicated instrumentation and commercialize the analyses

Residual stress

Plastic deformation

The Future

A friendly user (including industrial users) facility

• Dedicated instrumentation for frequently used techniques

Such as powder diffraction with 2D detector for normal or high throughput applications

Quick access and/or remote access

Linked with dedicated instrument to minimize setup time; web-based remote access for users running experiment from home institution

Commercialized analytical services

Powder diffraction and residual stress measurement may be two key areas to promote fee-based analytical services